The Nano Fabrication Center

BGU NanoFabrication Facility Overview

- The BGU NanoFab center includes three clean rooms and two nano laboratories
 - Fab 1 <u>opened in 2005</u>
 - Thin films deposition (Sputter, Thermal evaporation, E-gun, PECVD) and etch (DSiE-Oxford Estrelas, DRIE-Oxford Cobra, IBM, Xatics-Si-isotropic XeF2) center
 - Fab 2 <u>opened in 2007</u>
 - Advanced lithography center (DWL, EBL Raith EPBG5150, Mask aligner, Nanoimprint)
 - Fab 3 <u>opened in 2014</u>
 - ➤ Thin films deposition (LPCVD, CVD & E-gun)
 - Two nano lab
 - Packaging , FIB & Characterization
 - Electrical and optical characterization of devices
- Professional staff are employed by the center

BGU NanoFabrication Capabilities Overview

- The BGU Nano Fabrication center is a facility serving academic, industrial and governmental sectors
- The complex incorporates state-of-the-art R&D and prototype fabrication infrastructure for
 - Nano/Microelectronics
 - Nanophotonics and Optoelectronics
 - BioMEMS, BioChip,
 - Microfluids
 - Multielectrode array
 - Nano/ Micro systems (MEMS)

Photonics Devise Fabrication – BGUs' Researchers

Collaboration with International Academia

Chips Designed and Fabricated at BGU for our International Collaborations

Ion Chip for testing advanced technologies, made for the University of Mainz*

Loops for Sagnac Interferometry for rotation sensing (inertial navigation), made for the University of Nottingham*

Permanent-Magnet Atom Chip for ultra-short-periodicity lattices (for quantum computing) made for the University of Amsterdam*

Ion Chip Trap with Transparent ITO Electrodes **Fabricated for University of Mainz, Germany**

RF-based Atom Chip for a Guided Sagnac Interferometer **Fabricated for University of Nottingham**

Conceptual design

① Top chip: two layers of 2 x 70 μm gold planer spirals. Spacing between coils 3 µm. DC current flows in the coils.

2 Bottom chip: two layers of 40 x 40 µm copper planar spirals. Spacing between coils = 200 µm. AC current (~3A, 2-3MHz) flows in the coils.

Process highlights:

- etch a 40 x 40 μm trench
- · create vias to the other side
- · deposit gold seed layer at the bottom of the trench
- · copper electroplating
- repeat these procedures on the other side

BGU Nano-Fabrication Center Supporting Israeli Universities

Dr. Ofer Firstenberg **Department of Physics** of Complex Systems

papuadsns waveguide

Professor Anat Levin Department of Computer Science and Applied Mathematics

holographic

MIM Photonic Circuit

Dr. Shlomo Goldin and Alexander Rozin, Dept. of Physics/Electro-Optic Engineering (funded by the Ministry of Energy)

