

תחום התקני מצב מוצק (המ"מ) ואשכול גידול השכבות (אשכול התקנים) במרכז הפוטוניקה

Solid State Devices group and The Photonic Devices branch at the Israeli Center for Advance Photonics (ICAP)

Solid State Devices Group

(8-Ph.D, 2-M.Sc, 1-Stud., 1-Tec, 2- consultants)

Main Facilities

- Clean room (70-m², Class-100)
- MOCVD (As/Sb/P)
- Metal deposition (E-Beam, Sputter)
- RIE, PECVD, RTP
- Characterization equipment:
 - HR-XRD (ICAP)
 - Photoluminescence (0.3-14μm, 10-350⁰k)
 - Life-Time (10-350°k)
 - Hall Effect
 - FTIR
 - Ellipsometer
 - Probe station, Black body, I-V, C-V

Main activities:

- IR Semiconductors (Detectors, DL, QD)
- Frequency conversion devices
- GaN (Detectors and Photonic devices)
- UWB Silicon devices

IR Semiconductors (Detectors)

- InSb Epi layers for MWIR detectors (MOCVD)
- InAsSb MWIR detectors (MOCVD)

שורק

 InAs/GaSb Type-2 Super-Lattice LWIR detectors by MBE (SCD and commercial vendor)

 Currently - extended SWIR (1-2.6µm MBE and MOCVD)

E-SWIR – 3 types of detectors

InAs/AISb pn Junction, T2SL **Epi layers - SCD**

שורק

T2SL: Type-2 **Super-Lattice**

~2.5µm

0

z (nm)

300K

10

20

2.4 2.2

2.0 1.8

1.6

1.4

-20

CB

VВ

-10

PL and Dark current Characterization

שורק

Spectral response and D* Measurements

6

Responsivity (A/Watt)

שורק

E-SWIR Detector, GaAsSb/InGaAs Type II Superlattice (T2SL) pn Junction, Planar device Absorption and I-V Measurements

- Dark current 1.2mA/cm 2 at 300K (11µA/cm 2 at 230K) at V= -50mV
- About 1.5 orders of magnitude above Rule 07 (300K)
- R_0A Product $28\Omega \cdot cm^2$ at 300K (1220 $\Omega \cdot cm^2$ at 230K)
- Ideality factor ~1.25 at high temperatures

שורק

Temperature (K)

MOCVD growth research

Droplet epitaxy QD

שורק

AlGaAs regrowth for high power diode lasers

Regrowth of GaAs/AlGaAs alternating layers

Frequency conversion devices

- Ferro-electric crystals (PPKTP and PPSLT)
- The technology was commercialized at "Raicol Crystals"

Frequency conversion devices

Orientation Patterned GaAs (OPGaAs) Waveguides (MOCVD)

שורק

First reported OPGaAs WG – OPO by pulse laser

Parametric power spectral scan Pump : 12W , 2017nm-TM WG: 3mx12mx13mm

GaN photo-diodes (MOCVD – commercial vendors)

Low p-contact resistance ρ_c =6x10⁻⁴ Ω cm²

GaN diodes under positive bias

שורק

Electro-luminescence (EL) under positive bias

- EL emitted only under p contact
- Fabry-perot oscillations
- Yellow, Blue and UV lines

GaN photonics

GaN:

- Wide, direct band-gap (3.4eV)
- Transparent for λ >365nm
- Suitable for high power photonics
- Low loss waveguides demonstrated
- High damage threshold (~4GW/cm²)

DSRD - Drift Step Recovery Diode Epi-CVD (commercial vendors)

Silicon step recover diode for high voltage pulse with a rise rate of the order of 1kV/ns

Acoustic Microscope image is using to analyze the wafer bonding

The Photonic Devices branch at ICAP

The photonic devices branch is obliged to have the capabilities of design, growth and characterization of epitaxial structures of:

- Nitride compounds (III-N)
- Arsenide/phosphide/antimonide compounds (III-V)

The epi-structures will serve as the base to a variety of photonic (and electronic) devices

The center will also be able to supply small series of grown wafers to the industry

Epitaxial growth infrastructure (Epitaxy growth = deposition in ordered manner)

- MBE and MOCVD of As/P/Sb compounds
- MBE and MOCVD of nitride compounds
- Dedicated characterization tools

MOCVD - Metal-Organic Chemical Vapor Deposition **MBE** - Molecular Beam Epitaxy

Infrastructure requirements:

- State of the art technologies
- Maximum flexibility
- Small scale manufacturing capabilities

MBE and MOCVD basic principles

שורק

- Ultrahigh vacuum (~10⁻¹¹ Torr) evaporation of pure elements.
- Thermal evaporation or E-Beam evaporation (Thermal evaporation in our system)
- Growth of crystals is by physical deposition

- Gas phase transfer of the materials to be deposited on the substrate.
- Moderate pressures (10 to 760 Torr)
- Pyrolysis: The heated organic precursor molecules decompose in the absence of oxygen
- Growth of crystals is by chemical reaction.

MBE vs. MOCVD

	Strengths	Weakness	Remarks
MBE	 Abrupt interface Simple process Uniform Mature In-situ monitoring 	 Low growth rate Maintenance: Long shutdown time Regrowth on patterned samples 	 Using phosphor needs extra care
MOCVD	 Most flexible Regrowth on patterned samples Large scale production In-situ monitoring (limited) Maintenance: Short shutdown time 	 Many growth parameters Expensive sources Hazardous 	 New In-situ monitoring available No AsH₃ and PH₃ in our system

MOCVD (Metal-Organic Chemical Vapor Deposition)

Aixtron CCS III-N (GaN)/III-V (GaAs) Dual application system

Substrates: 6x2" or 3x3" or 1x4" or 1x6"

Growth configuration:

- Two ammonia lines (GaN)
- Metal Organics lines:
 - Standard lines: TMIn (with epison), TEGa, TMSb, TBA, TBP
 - Double dilution, double outlet lines : TMGa, TMAI

This configuration enables the growth of variety of epistructures including composite GalnAIN quantum well structures

MOCVD (Cont..)

Dopants lines:

- Two double dilution Si (Silane-SiH₄, Disilan-SiH₆) sources (for low and high n type conductivity)
- Mg source (*p type doping*)
- Double dilution line: CBr₄ (carbon doping)

Enables growth of **semi-insulator layer**

Max. temperature: 1300C Enables **thick AIN buffer layers** which are important for some applications

Tensile strain generation

Bufferlayer - AIN

- Extended defects
- Strain management

Substrate - SiC(0001) or AIN(0001)

A schematic LED structure

MOCVD: In situ monitoring and controlling tools

• EP curve TT

- Emissivity corrected pyrometry (Wafer/Wafer carrier temperature measurement)
- Growth rate/thickness monitoring by high accuracy reflectance measurements
- Wafer curvature measurements

Argus

A multi-channel pyrometer temperature profiler for real-time surface temperature measurement and mapping

Special feature

Dynamic reactor height adjustments according to the growth parameters

MBE (Molecular Beam Epitaxy)

Two UHV growth chambers and one central distribution chamber (CDC) with automatic wafer handling

Automatic

Load lock

GaN chamber

Chamber 1: III/V compounds

III-V chamber

• Chamber 2: Nitride compounds

MBE III-V (As/P/Sb) Chamber

Substrates: 3x2", 1x3" or 1x4"

Effusion cells:

- 6 cells for Al/In/Ga
- 3 cells for As, P, Sb
- 2 cells for dopants (Si/Be, Te)

GaAs, InP, InAs, InSb, AISb, AlGaAs, InGaAs, GaAsSb, InGaAsSb.....

Dual zone heater to 1200c

MBE Plasma Assisted (PA) nitrogen III-N (GaN) Chamber

Substrates: **3x2**", **1x3**" or **1x4**" Effusion cells:

- 3 cells for In/Ga
- 2 cells for Al
- 2 cells for dopants (Si, Mg)

GaN, GaAIN, GaInN, GaAnAIN

Dual zone heater to 1200c

MBE - In situ monitoring and controlling tools

- RHEED Reflection High Energy Electron Diffraction
- RGA Residual Gas Analyzer
- BMF Beam Flux Monitor
- BandiT Band Edge temperature real time monitoring

Epitaxial layers characterization tools at ICAP

On site

- HR-XRD mapping
- Photoluminescence (PL) mapping (0.3-2.6μm)
- CV profiler (Doping measurements of semiconductors)

A large variety of characterization tools in Soreq and Ben-Gurion Uni. will also be available

תודה ! Thanks !

שורק